Questions

Apply Bernoulli's equation to answer the following questions.

Question 1:

You have a horizontal hose through which water flows with a velocity of $1 \mathrm{~m} / \mathrm{s}$. If the pressure of the water within the hose is $350,000 \mathrm{~Pa}$, what do you estimate the velocity of the water coming out of the end of the hose will be?

Use the density of water as $997 \mathrm{~kg} / \mathrm{m}^{3}$, the gravitational constant as $9.81 \mathrm{~m} / \mathrm{s}^{2}$, and the hose nozzle at atmospheric pressure, $101,000 \mathrm{~Pa}$.

Remember that Pa has units of $\mathrm{kg} / \mathrm{ms}^{2}$.

Question 2:

Now let's think bigger!

Use Bernoulli's principle to predict the longest straw that you can drink out of. How long can we make the straw and still have the liquid arrive at the top?

Since this is an estimate, let's use rounded numbers for the following values: $P_{\text {atmosphere }} \cong 10^{5}$ $\mathrm{Pa}, \rho_{\text {water }} \cong 10^{3} \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~g} \cong 10 \mathrm{~m} / \mathrm{s}^{2}$

Hint 1: Assume the system is static - we are only interested in the highest point the fluid can travel up the straw, not how quickly it gets there. This means V_{1} and V_{2} are zero.

Hint 2: Assume you have super-human strength and so can suck hard enough on one end of the straw to make it a vacuum (pressure $=0 \mathrm{~Pa}$).

